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Mixed-spin Ising model with one- and two-spin competing dynamics

M. Godoy and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 6 July 1999!

In this work we found the stationary states of a kinetic Ising model, with two different types of spins:s
51/2 andS51. We divided the spins into two interpenetrating sublattices, and found the time evolution for the
probability of the states of the system. We employed two transition rates which compete between themselves:
one, associated with the Glauber process, which describes the relaxation of the system through one-spin flips;
the other, related to the simultaneous flipping of pairs of neighboring spins, simulates an input of energy into
the system. Using the dynamical pair approximation, we determined the equations of motion for the sublattice
magnetizations, and also for the correlation function between first neighbors. We found the phase diagram for
the stationary states of the model, and we showed that it exhibits two continuous transition lines: one line
between the ferrimagnetic and paramagnetic phases, and the other between the paramagnetic and antiferrimag-
netic phases.

PACS number~s!: 64.60.Ht
a
ns
e
s

h
f
rn
m
ca
nd
-
sp
th

n-
rg
ro
n

I
t
a
t

ve
si

w
W
nd
es
s
et

y-
f the
-
ee

the
ble,
n the
ra-
. In
s of
ion
i-

ions
he
lly,

lat-

nd
lat-
ed

ins,

he
I. INTRODUCTION

In this work we studied the nonequilibrium states of
two-sublattice ferromagnetic Ising model with mixed spi
s51/2 andS51. The time evolution of the states of th
system is governed by two competing dynamical proce
one simulating the contact of the system with a heat bat
a fixed temperatureT, and the other mimicking an input o
energy into the system. If a system is subject to an exte
flux of energy, it can exhibit the self-organization pheno
enon. Self-organizing structures are well known in chemi
reactions and in fluid dynamics. The book by Nicolis a
Prigogine@1# and that by Haken@2# present interesting ex
amples of these phenomena. In our open ferromagnetic
system, the contact with the heat bath is simulated by
Glauber stochastic process@3#, where boths and S spins
relax through single-spin flips. In our model, the flux of e
ergy into the system favors states with the highest ene
generating a competition with the one-spin flip Glauber p
cess. The increase in the energy states is obtained whe
simultaneously flip a nearest neighbor pair of spinss andS.
This is not a Kawasaki exchange process@4#, as used, for
instance, in the work of Tome´ and de Oliveira@5# to induce
a self-organizing phenomenon in the kinetic Ising model.
their model, the stochastic Kawasaki dynamics conserves
order parameter. Here our particular interest is to investig
the competition between two dynamical processes when
order parameter is not conserved. This is easily achie
with the two-sublattice Ising mixed-spin system, after a
multaneous flipping of a pair of nearest neighbor spins.

We used the dynamical pair approximation@6# to de-
couple the hierarchy of equations of motion which follo
from the application of the master equation approach.
attribute a weightp to the one-spin flip Glauber process, a
a weight (12p) to the two-spin flip process, which increas
the energy of the system. We found the stationary state
the model as a function of temperature and of the param
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p, which accounts for the competition between the two d
namical processes. We determined the phase diagram o
model in the plane of temperatureT versus competition pa
rameter (Q512p), and we noticed the presence of thr
different phases: for very small values ofQ ~small flux of
energy!, we obtained a ferrimagnetic phase. Increasing
flux of energy, the ferrimagnetic phase becomes unsta
and appears to be a paramagnetic phase. However, whe
flux becomes large, we observed a transition from the pa
magnetic phase to the ordered antiferrimagnetic phase
Sec. II, we describe the model and derive the equation
motion for the sublattice magnetizations and the correlat
functions of interest. In Sec. III, we apply the pair approx
mation decoupling scheme to find a closed set of equat
of motion. In Sec. IV, we find the stationary states of t
system, and exhibit the phase diagram of the model. Fina
in Sec. V, we present our conclusions.

II. MODEL AND EQUATIONS OF MOTION

We consider a ferromagnetic Ising model in a square
tice with mixed spinss51/2 andS51, in a bipartite lattice,
with the s spins occupying the sites of one sublattice, a
theSspins occupying the sites of the other one, each sub
tice containingN sites. A state of the system is represent
by (s,S)[(s1 , . . . ,s l , . . . ,sN ;S1 , . . . ,Sm , . . . ,SN),
where the spin variabless l can assume the values61 and
the spin variablesScan assume the values 0,61. The energy
of the system in the state (s,S) is given by

E~s,S!52J(
( i , j )

Sis j , ~1!

where the sum is over all nearest neighboring pairs of sp
andJ is taken to be positive. Let us callp(s,S;t) the prob-
ability of finding the system in the state (s,S) at timet. The
equation of motion for the probability of the states of t
system is given by the gain and loss master equation@7#
218 ©2000 The American Physical Society
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d

dt
p~s,S;t !52 (

s8,S8
W~s,S→s8,S8!p~s,S;t !

1 (
s8,S8

W~s8,S8→s,S!p~s8,S8;t !, ~2!

whereW(s,S→s8,S8) is the probability, per unit of time
for the transition from state (s,S) to state (s8,S8). In this
model, we assume that the transition rateW(s,S→s8,S8) is
given by the competition between two independent stoch
tic processes: the one-spin flip Glauber process, intende
describe the relaxation of thes andS spins in contact with
the heat bath at temperatureT, is written as

WG~s,S→s8,S8!5WG~s,S→s8,S!1WG~s,S→s,S8!,
~3!

and the two-spin flip process, chosen independent of t
perature, and intended to increase the energy of the sys
is written asWGD(s,S→s8,S8). Then we can write the fol-
lowing equation for the total transition probability:

W~s,S→s8,S8!5pWG~s,S→s8,S8!

1~12p!WGD~s,S→s8,S8!, ~4!

where 0<p<1 is the competition parameter between t
one-spin flip and two-spin flip processes. The one-spin
process is described by the Glauber dynamics, that is,

WG~s8,S8→s,S!

5(
j 51

N

ds1 ,s
18
ds2 ,s

28
. . . ds j ,2s

j8
. . . dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
. . . dSk ,S

k8
. . . dSN ,S

N8
v j~s8!

1 (
k51

N

ds1 ,s
18
ds2 ,s

28
. . . ds j ,s

j8
. . . dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
. . . dSk ,S̃k

. . . dSN ,S
N8
vk~S̃!,

~5!

wherev j (s) andvk(S) are the probabilities of flipping the
spins s j and Sk , respectively. We used the variableS̃k to
mean the two possible values that a change of the actual
stateSk can take. We adopt the Metropolis prescription f
these one-spin flip transitions, that is,

v j~s!5min@1,exp~2bDEj !#, ~6!

where b51/kBT, and T is the absolute temperature of th
heat bath.DEj is the change in energy after flipping spins j
at sitej. We also assume a similar expression forvk(S). The
two-spin flip transition rate is written in the form
s-
to

-
m,

p

in
r

WGD~s8,S8→s,S!

5 (
j ,k51

N

ds1 ,s
18
ds2 ,s

28
. . . ds j ,2s

j8
. . . dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
. . . dSk ,S̃k

. . . dSN ,S
N8
v jk~s8,S̃!,

~7!

wherev jk(s,S) is the probability of a simultaneous flippin
of neighboring spinss j andSk . This process is designed t
favor an increase in the energy of the system, and it is w
ten as

v jk~s,S!5H 0 if DEjk<0

1 if DEjk.0,

whereDEjk is the change in energy after flipping the spi
s j and Sk , at the neighboring sitesj and k. The average
value of a function of stateA(s,S) is given by

^A~s,S!&5(
s,S

A~s,S!p~s,S;t !, ~8!

where we sum over all possible configurations of spinss and
S. If, for instance,A(s,S)5s l , we obtain the sublattice
magnetization associated with thes sublattice. On the othe
hand, ifA(s,S)5Sm , we obtain the sublattice magnetizatio
related to theSsublattice. In this way, we can write the set
equations:

d

dt
^s l&5pAl1~12p!Dl , ~9!

d

dt
^Sm&5pBm1~12p!Em , ~10!

where

Al522^s lv l~s!&, ~11!

Bm5^~S̃m2Sm!vm~S!&, ~12!

Dl522 (
k

(NN of l )

^s lv lk~s,S!&, ~13!

Em5 (
j

(NN of m)

^~S̃m2Sm!v jm~s,S!&, ~14!

where~NN of l ! means that the sum is performed over all t
nearest neighbors of the sitel of a given sublattice. For the
correlation function between nearest neighbor spins in
sublatticess andS, ^s lSm&, we can write

d

dt
^s lSm&5pAlm1~12p!Dlm , ~15!

where

Alm522^s lSmv l~s!&1^s l~S̃m2Sm!vm~S!&, ~16!
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Dlm52^s l~S̃m1Sm!v lm~s,S!&

1 (
j Þ l

(NN of m)

^s l~S̃m2Sm!v jm~s,S!&

22 (
kÞm

(NN of l )

^s lSmv lk~s,S!&. ~17!

The equations of motion for the sublattice magnetizatio
^s l& and ^Sm&, and for the correlation function̂s lSm& are
exact. Unfortunately, we do not know an exact express
for the probability distribution of the states. We need to e
ploy some approximation scheme in order to decouple the
of equations. Here we appeal to the pair approximati
which is the simplest approximation beyond the mean fi
one.

III. PAIR APPROXIMATION

Considering the application of the pair approximation
this dynamical mixed-spin problem, a set of self-consist
equations is not immediately obtained, because there
appear the correlationŝSm

2 & and ^s lSm
2 &. To see this, let us

consider a single pair of spinss and S. We can write the
following identity for the joint probability of the spinss and
S:

p~s,S;t !5 (
s8,S8

ds,s8dS,S8p~s8,S8;t !, ~18!

where

ds,s85
1

2
~11ss8!, ~19!

and

dS,S8512~S21S82!1
1

2
SS81

3

2
~SS8!2. ~20!

Then the probability for the pair (s,S), at time t, can be
written as

p~s,S;t !5
1

2 F11s^s~ t !&1
1

2
S^S~ t !&2S22^S2~ t !&

1
3

2
S2^S2~ t !&1

1

2
sS^s~ t !S~ t !&2sS2^s~ t !&

2s^s~ t !S2~ t !&1
3

2
sS2^s~ t !S2~ t !&G . ~21!

Before proceeding with the calculations, let us write t
equations of motion for the correlations^Sm

2 & and ^s lSm
2 &:

d

dt
^Sm

2 &5pCm1~12p!Fm , ~22!

d

dt
^s lSm

2 &5pBlm1~12p!Elm , ~23!
s

n
-
et
,

d

t
so

where

Cm5^~S̃m
2 2Sm

2 !vm~S!&, ~24!

Fm5 (
j

(NN of m)

^~S̃m
2 2Sm

2 !v jm~s,S!&, ~25!

Blm522^s lSm
2 v l~s!&1^s l~S̃m

2 2Sm
2 !vm~S!&, ~26!

Elm52^s l~S̃m
2 1Sm

2 !v lm~s,S!&

1 (
j Þ l

(NN of m)

^s l~S̃m
2 2Sm

2 !v jm~s,S!&

22 (
kÞm

(NN of l )

^s lSm
2 v lk~s,S!&. ~27!

Now we search for solutions such thatm15^s l&, for any
spin belonging to thes sublattice, andm25^Sm&, for any
spin belonging to theS sublattice. We also define the corre
lation functions r 5^s lSm&, q5^Sm

2 & and q15^s lSm
2 &. In

this way, we can write the following expressions for the on
and two-spin probabilities:

P1~s1!5
1

2
~11s1m1!, ~28!

P2~S2!511
1

2
S2m22S2

22S 12
3

2
S2

2Dq, ~29!

P12~s1 ,S2!5
1

2 F11s1m11
1

2
S2m22S2

22S 12
3

2
S2

2Dq

1
1

2
s1S2r 2s1S2

2m12s1S 12
3

2
S2

2Dq1G ,
~30!

wheres1 andS2 are nearest neighboring spins belonging
thes andSsublattices, respectively. To find the mean valu
of interest, we need to consider three different types of cl
ters: For the square lattice, theA cluster is composed of a
spin s1 of the s sublattice, surrounded by four spinsSi of
the S sublattice. The probability of this cluster is

PA5P1~s1! )
i

(NN of 1)

P12~s1 ,Si !

P1~s1!
. ~31!

The second cluster we consider, theB cluster, is composed o
a spinS2 of the S sublattice, surrounded by four spinss l of
the s sublattice. The probability of this cluster is given by

PB5P2~S2! )
l

(NN of 2)

P12~s l ,S2!

P2~S2!
. ~32!

The third cluster, theC cluster, is made up of a pair o
nearest neighbor spinss1, belonging to thes sublattice;S2



In
is

la
or
o

s
e
o

on
er

ti

re
e

,

tw
et
he

t-
m
th

rr
e
s

-

la-

nd

e is

put
etic

tic

cal
ble,
be-

con-
m-
spin
n to
t of
-
d

here
e,

ag-
also

e
lar

m-

ing

r
note
, re-

PRE 61 221MIXED-SPIN ISING MODEL WITH ONE- AND TWO- . . .
belonging to theS sublattice; and their nearest neighbors.
this pair approximation, the probability of this cluster
given by

PC5P12~s1 ,S2! )
iÞ2

(NN of 1)

P12~s1 ,Si !

P1~s1! )
lÞ1

(NN of 2)

P12~s l ,S2!

P2~S2!
.

~33!

After straightforward, but tedious, algebraic manipu
tions, we finally arrive at the following set of equations f
the time evolution of the sublattice magnetizations and c
relation functions:

d

dt
m15pA1~m1 ,m2 ,r ,q,q1!1~12p!D1~m1 ,m2 ,r ,q,q1!,

~34!

d

dt
m25pB2~m1 ,m2 ,r ,q,q1!1~12p!E2~m1 ,m2 ,r ,q,q1!,

~35!

d

dt
q5pC2~m1 ,m2 ,r ,q,q1!1~12p!F2~m1 ,m2 ,r ,q,q1!,

~36!

d

dt
r 5pA12~m1 ,m2 ,r ,q,q1!1~12p!D12~m1 ,m2 ,r ,q,q1!,

~37!

d

dt
q15pB12~m1 ,m2 ,r ,q,q1!1~12p!E12~m1 ,m2 ,r ,q,q1!.

~38!

The expressions which appear on the right-hand side
Eqs.~34!–~38! are too lengthy to present here. In Sec. IV w
will obtain the numerical solutions of the above system
equations.

IV. STATIONARY STATES AND PHASE DIAGRAM

The steady state solutions of the system of equati
~34!–~38! are obtained by employing the fourth-ord
Runge-Kutta method. For selected values ofp andT, we find
three different types of magnetic ordering: a ferrimagne
state, with m1Þm2, and m1.0, m2.0; a paramagnetic
state, withm15m250; and an antiferrimagnetic state, whe
m1Þm2, andm1,0, m2.0. In Fig. 1, we exhibit the phas
diagram of the model in the planeh5exp(21/2u), versus
Q512p, where u5kBT/2zJ is the reduced temperature
andz is the number of nearest neighbors (z54 for the square
lattice!. It displays three different phases, separated by
continuous transition lines: one between the ferrimagn
~F! and paramagnetic~P! phases, and the other between t
paramagnetic~P! and antiferrimagnetic~AF! phases. For the
particular caseQ50, where only one-spin flips are permi
ted, the stationary state coincides with the thermodyna
equilibrium state, because there is no flux of energy into
system. In this pair approximation, we found the valueuc
50.3068 for the transition temperature between the fe
magnetic and paramagnetic phases. The mean field valu
this critical temperature isuc50.408. Other known estimate
-

r-

of

f

s

c

o
ic

ic
e

i-
for

for this critical temperature areuc50.182 from real space
renormalization@8#, uc50.244 from series expansion calcu
lations@9#, uc50.24 from Monte Carlo simulations@10#, and
uc50.322 from mean field renormalization group calcu
tions @11#.

We point up that the competition between the one- a
two-spin flip already appears for small values ofQ. For u
,uc , and for very small values ofQ, the one-spin flip pro-
cess is the dominant one, and the ferrimagnetic phas
stable below a critical value of the competition parameterQ.
However, the two-spin flip process, which simulates an in
of energy into the system, easily destroys the ferrimagn
phase. For instance, the critical value atu50 is Qc50.04.
Above this critical value, we enter into the paramagne
phase, where the sublattice magnetizationsm1 andm2 van-
ish. Increasing the flux of energy, we reach another criti
value ofQ, where the paramagnetic phase becomes unsta
and an antiferrimagnetic phase appears. The transition
tween the paramagnetic and antiferrimagnetic phases is
tinuous, and the transition line is almost independent of te
perature. This stresses the dominant character of the two-
flip over the one-spin flip, because the former was chose
be independent of temperature. In Fig. 2 we show the plo
the sublattice magnetizationm1 as a function of the compe
tition parameterQ for two selected values of the reduce
temperature: one value below the critical temperatureuc ,
and the other one above it. In both cases, we notice that t
is a critical value ofQ, almost independent of temperatur
where the sublattice magnetizationm1 is nonanalytic. This
marks the dynamical phase transition between the param
netic and antiferrimagnetic phases. The same behavior is
observed for the other sublattice magnetizationm2. In Fig. 3,
we also exhibit the plot ofq5^S2& versus the competition
parameterQ for the same two temperatures of Fig. 2. At th
paramagnetic-antiferrimagnetic transition, we find a simi
nonanalytical behavior forq, as already seen form1 andm2.

This model system exhibits a self-organization pheno

FIG. 1. Phase diagram of the mixed-spin ferromagnetic Is
model in the planeh vs Q. h5exp(21/2u), whereu5kBT/2zJ is
the reduced temperature, andQ512p is the competition paramete
between the one- and two-spin flip processes. F, P, and AF, de
the ferrimagnetic, paramagnetic, and antiferrimagnetic phases
spectively.
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enon: when the flux of energy is not present, we have a w
defined equilibrium ferrimagnetic phase for all values of t
reduced temperature, such thatu,uc . However, when the
system is submitted to a small flux of energy, the ferrima
netic state can become unstable due to the simultaneous
ping of pairs of neighboring spins. The system will enter in
a paramagnetic phase, after a critical value of the param
Q, which measures the competition between one- and t
spin flips, is attained. If we still increase the flux of energ
the paramagnetic phase will become unstable, and finally
will reach an ordered antiferromagnetic phase, at a hig
value of the competition parameter. We would like to stre
that we could reverse the whole process, decreasing the
of energy from an ordered antiferrimagnetic steady state
finally arriving at a ferrimagnetic state, after crossing a pa
magnetic region. We would like to point out that the incl
sion of a magnetic field in our model system will change
phase diagram we have obtained. The ferrimagnetic to p
magnetic transition atQ50 will disappear, and the transitio
lines between the ferrimagnetic and paramagnetic pha
and between the paramagnetic and antiferrimagnetic pha
will move to the right in our Fig. 1, i.e., in the direction o
high values ofQ. The main effect of a magnetic field i
ultimately to destroy the antiferrimagnetic phase at large v
ues of the field. We intend, in the future, to include t
detailed effects of the field and of single-ion anisotropy
this two-sublattice mixed-spin Ising model.

FIG. 2. Magnetizationm1 as a function of the competition pa
rameterQ, for two different temperatures, as indicated in the figu
a
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V. CONCLUSIONS

In this work we have considered a nonequilibrium mixe
spin ferromagnetic Ising model in a square lattice. The
namical states of the system evolve in time following tw
competing dynamical processes: a one-spin flip of a spin
eithers51/2 or S51 sublattice, which accounts for the re
laxation of the system in the heat bath, and a simultane
flipping of two neighborings andSspins, which is assumed
to be independent of temperature, and that simulates a flu
energy into the system. The equations of motion were dec
pled by the dynamical pair approximation, and we fou
three different possible steady states. The phase diagram
hibits, at a very low flux of energy, a ferrimagnetic phas
which becomes unstable at a critical value of the competit
parameter between the two dynamical processes. Above
critical value, the spin system settles into a paramagn
phase, and a new critical value of the competition param
is attained. If the flux of energy is sufficiently high, the sy
tem will organize itself into an antiferrimagnetic arrang
ment of spins. The ferrimagnetic to paramagnetic and pa
magnetic to antiferrimagnetic transitions are both continu
phase transitions.
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FIG. 3. Autocorrelation functionq5^S2& as a function of the
competition parameterQ, for two selected values of temperature,
indicated in the figure.
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